On the Detection of Mixture Distributions with applications to the Most Biased Coin Problem
نویسندگان
چکیده
This paper studies the trade-off between two different kinds of pure exploration: breadth versus depth. The most biased coin problem asks how many total coin flips are required to identify a “heavy” coin from an infinite bag containing both “heavy” coins with mean θ1 ∈ (0, 1), and “light” coins with mean θ0 ∈ (0, θ1), where heavy coins are drawn from the bag with probability α ∈ (0, 1/2). The key difficulty of this problem lies in distinguishing whether the two kinds of coins have very similar means, or whether heavy coins are just extremely rare. This problem has applications in crowdsourcing, anomaly detection, and radio spectrum search. Chandrasekaran and Karp (2014) recently introduced a solution to this problem but it required perfect knowledge of θ0, θ1, α. In contrast, we derive algorithms that are adaptive to partial or absent knowledge of the problem parameters. Moreover, our techniques generalize beyond coins to more general instances of infinitely many armed bandit problems. We also prove lower bounds that show our algorithm’s upper bounds are tight up to log factors, and on the way characterize the sample complexity of differentiating between a single parametric distribution and a mixture of two such distributions. As a result, these bounds have surprising implications both for solutions to the most biased coin problem and for anomaly detection when only partial information about the parameters is known.
منابع مشابه
The Power of Adaptivity in Identifying Statistical Alternatives
This paper studies the trade-off between two different kinds of pure exploration: breadth versus depth. We focus on the most biased coin problem, asking how many total coin flips are required to identify a “heavy” coin from an infinite bag containing both “heavy” coins with mean ✓ 1 2 (0, 1), and “light" coins with mean ✓ 0 2 (0, ✓ 1 ), where heavy coins are drawn from the bag with proportion ↵...
متن کاملStatistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...
متن کاملThe Weibull Topp-Leone Generated Family of Distributions: Statistical Properties and Applications
Statistical distributions are very useful in describing and predicting real world phenomena. Consequently, the choice of the most suitable statistical distribution for modeling given data is very important. In this paper, we propose a new class of lifetime distributions called the Weibull Topp-Leone Generated (WTLG) family. The proposed family is constructed via compounding the Weibull and the ...
متن کاملFinding a most biased coin with fewest flips
We study the problem of learning the most biased coin among a set of coins by tossing the coins adaptively. The goal is to minimize the number of tosses to identify a coin i∗ such that Pr (coin i∗ is most biased) is at least 1 − δ for any given δ. Under a particular probabilistic model, we give an optimal algorithm, i.e., an algorithm that minimizes the expected number of tosses, to learn a mos...
متن کاملNegative Selection Based Data Classification with Flexible Boundaries
One of the most important artificial immune algorithms is negative selection algorithm, which is an anomaly detection and pattern recognition technique; however, recent research has shown the successful application of this algorithm in data classification. Most of the negative selection methods consider deterministic boundaries to distinguish between self and non-self-spaces. In this paper, two...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1603.08037 شماره
صفحات -
تاریخ انتشار 2016